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Abstract
The present work aims at providing a methodological approach for the investigation of resilience factors and mechanisms in
normal aging, Alzheimer’s disease (AD) and other neurodegenerative disorders. By expanding and re-conceptualizing traditional
regression approaches, we propose an approach that not only aims at identifying potential resilience factors but also allows for a
differentiation between general and dynamic resilience factors in terms of their association with pathology. Dynamic resilience
factors are characterized by an increasing relevance with increasing levels of pathology, while the relevance of general resilience
factors is independent of the amount of pathology. Utility of the approach is demonstrated in age and AD-related brain pathology
by investigating widely accepted resilience factors, including education and brain volume. Moreover, the approach is used to test
hippocampal volume as potential resilience factor. Education and brain volume could be identified as general resilience factors
against age and AD-related pathology. Beyond that, analyses highlighted that hippocampal volume may not only be disease
target but also serve as a potential resilience factor in age and AD-related pathology, particularly at higher levels of tau-pathology
(i.e. dynamic resilience factor). Given its unspecific and superordinate nature the approach is suitable for the investigation of a
wide range of potential resilience factors in normal aging, AD and other neurodegenerative disorders. Consequently, it may find a
wide application and thereby promote the comparability between studies.
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Introduction

The brain is a self-organizing and adaptive system that shows
robustness in the sense of sustained cognitive functioning in
spite of gradual or sudden impairment of its components. This
remarkable property derives from complex maintenance, re-
pair and compensatory mechanisms, also labelled as resilience
mechanisms. The traditional conceptual model to describe the
tendency to relative constancy (i.e. stable steady states) is the
concept of homeostasis (Cannon 1932). However,

homeostasis fails taking into account that the internal milieu
of the brain is not permanently fixed. It exhibits dynamic
regulation and interaction among various levels of organiza-
tion and a dynamic and constantly changing nature of growth,
development, maturation and aging. A concept that accounts
for both the tendency towards relative constancy of physio-
logical status as well as the dynamic nature of brain develop-
ment and adaption is the concept of homeodynamics (Lloyd
et al. 2001; Yates 1994). Resilience mechanisms enabling rel-
ative constancy and robustness can therefore be considered as
one part of the homeodynamic processes.

Despite the tendency to constancy and robustness, marked
individual variability of cognitive phenotypes at given levels
of brain pathology, damages, or impairments have been ob-
served (e.g. in normal aging and Alzheimer’s disease (AD))
(Davis et al. 1999; Katzman et al. 1988; Riley et al. 2002).
These observations imply strong variations in the degree of
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brain resilience and suggest an intrinsically continuous nature
of resilience, as shown in Figure 1. Mechanisms underlying
resilience operate and interact among different micro- and
macrostructural levels (from genes over proteins and cells up
to micro- and macrocircuits). Moreover, they can be
subdivided in passive and active mechanisms. Passive mech-
anisms define resilience as the amount of damage that can be
sustained before reaching a threshold for clinical expression.
Active mechanisms define resilience as an active attempt to
compensate for brain damage (Stern 2002). In the field of
brain research, passive mechanisms have been subsumed under
the term brain reserve while active mechanisms have been sub-
sumed under the term cognitive reserve (Stern 2009). Beyond
that, resilience mechanisms can be distinguished based on their
association with pathology. While the importance of some
mechanisms varies as a function of the amount of pathology
(i.e. dynamic resiliencemechanisms; e.g. increasing importance
of a resilience mechanism with higher levels of pathology), the
importance of others is independent of the amount of pathology
(i.e. general resilience mechanisms). These complex character-
istics of resilience mechanisms make it challenging to identify,
characterize and disentangle such mechanisms.

A better understanding of resilience mechanisms leads to a
deeper comprehension of homeodynamic processes, which ul-
timately determine the clinical phenotypes in normal aging and
neurodegenerative diseases, such as AD. This is a necessary
step towards more accurate prediction of cognitive decline in
normal aging and neurodegenerative diseases as well as for the
identification of possible prevention and treatment strategies.
The present work aims at introducing a methodological ap-
proach for the investigation of resilience mechanisms that ex-
tends and re-conceptualizes existing approaches. Given its un-
specific and superordinate nature it is applicable to a wide range
of research questions within the field of resilience research and
may therefore promote the comparability between studies.

First, we introduce the methodological approach and its
theoretical background. Thereafter, utility of the approach is
demonstrated in age and Alzheimer’s disease (AD)-related
brain pathology, by investigating widely accepted resilience
factors, including education and brain volume. In an explor-
ative analysis, we subsequently investigated the potential of
hippocampal volume to serve as resilience factor.
Hippocampal atrophy is one of the core characteristics in ag-
ing and AD and is closely related to disease-typical memory
deficits (Jack et al. 2000; Shi et al. 2009). However, some
studies showed an association between higher hippocampal
volumes and preserved cognitive functioning in the presence
of AD-related brain pathology, indicating that the hippocam-
pus might also represent a promising resilience factor
(Chételat et al. 2010; Erten-Lyons et al. 2009).

Methods

Introduction of the approach to studying resilience
mechanisms

The investigation of resilience mechanisms requires, at mini-
mum, a measure of a resilience factor, a measure of pathology
or brain damage, and a measure of cognitive outcome. In the
literature on resilience research this full model is only rarely
tested. Studies that considered all 3 components usually ap-
plied regression approaches where cognitive performance was
set as outcome variable and an interaction term between pa-
thology and resilience factor was set as predictor variable.
Traditionally, a significant interaction term was considered
necessary to support the claim of resilience (Christensen
et al. 2008).

By expanding and re-conceptualizing such traditional re-
gression approaches we propose an approach that not only
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Fig. 1 Brain pathology, damages
or impairments are associated
with cognitive decline as shown
by the black arrow. This
association is modulated by
resilience mechanisms. High
resilience (green part of the
colored triangle) counteracts brain
pathology and preserves
cognition or reduces cognitive
decline (green arrow). Low
resilience (red part of the colored
triangle) leads to accelerated
cognitive decline (red arrow)



aims at the identification of potential resilience factors but also
allows for a differentiation between general and dynamic re-
silience factors in terms of their association with pathology
(dynamic resilience factor: increasing importance of a resil-
ience factor with higher levels of pathology; general resilience
factor: the importance of the resilience factor is independent of
the amount of pathology). The model is described in the fol-
lowing equation.

COG ¼ β0þ β1*PATH þ β2*RES FACTOR

þ β3* RES FACTOR*PATHð Þ þ ε ð1Þ

In this model, a pathology measure (PATH), a potential
resilience factor (RESFACTOR, e.g. brain volume), and the in-
teraction between resilience factor and pathology measure
(RESFACTOR *PATH) are regressed against cognitive perfor-
mance (COG). Since pathology is entered as predictor vari-
able, the variance in cognition as outcome variable is adjusted
for the effect of pathology. The remaining variance in cogni-
tion which is not explained by pathology (in other words:
cognitive performance which deviates from the performance
that would be expected based on the amount of pathology) can
be seen as a measure of resilience. In order to improve the
comprehensibility and readability hereinafter, the outcome
variable is referred to as Bresilience^. Several pathology mea-
sures as well as their interaction terms with the resilience
factor can be added to the model. Moreover, the model can
be complemented by control variables. All continuous predic-
tor variables in the model should be mean-centered in order to
reduce collinearity among predictors. In case of outliers, a
robust regression model should be applied in addition to/
instead of the linear model.

Resilience factors are supported by the model in the fol-
lowing cases:

(i) General resilience factor: Positive main effect of the re-
silience factor on resilience. No association between the
interaction term (RESFACTOR*PATH) and resilience.

This result indicates that the resilience factor is asso-
ciated with resilience, irrespective of the amount of
pathology.

(ii) Dynamic resilience factor: Significant association be-
tween the interaction term (RESFACTOR*PATH) and re-
silience, such that the resilience factor is positively relat-
ed with resilience whereby the strength of this associa-
tion differs at low and high levels of the pathology mea-
sure. No main (independent) effect of the resilience fac-
tor on resilience.

This result indicates a dynamically changing associa-
tion between resilience factor and resilience as a function
of the amount of pathology, whereby the resilience factor
is not independently associated with resilience.

(iii) General and dynamic resilience factor: Positive main
(independent) effect of the resilience factor on resil-
ience. Significant association between the interaction
term (RESFACTOR*PATH) and resilience, such that the
resilience factor is positively related to resilience where-
by the strength of this association differs at low and high
levels of pathology.

This result indicates that the resilience factor is asso-
ciated with resilience, irrespective of the amount of pa-
thology, whereby the strength of this association dynam-
ically changes as a function of the amount of pathology.

Demonstration of utility

Utility of the approach is demonstrated in age and AD-related
brain pathology. Pathology was quantified using cerebrospinal
fluid (CSF) measurements of p- and t-tau, positron emission
tomography (PET)-based measurements of cerebral amyloid
load, and magnetic resonance imaging-based measures of white
matter hyperintensity volume (WMHV). Initially, we investigat-
ed widely accepted resilience factors, including education and
brain volume. Thereafter, we applied our model to investigate
the potential of hippocampal volume to serve as resilience factor.

Participants

Data were obtained from the Alzheimer ’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clin-
ical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). The present study sample
consisted of 457 older individuals without dementia from the
ADNI-2 cohort, including 158 cognitively normal (CN) and
299 MCI participants. Detailed diagnostic criteria have been
published on the ADNI website (adni.loni.usc.edu/methods).
Eligibility criteria for the present study included availability of
AV45-PET, high-resolution structural MRI acquisitions, cog-
nitive assessment, and CSF-Tau measurement from the same
study time point. Demographical and clinical data of the sub-
jects are shown in Table 1.

Standard protocol approvals, registrations, and patient
consents

Data collection and sharing in ADNI were approved by the
Institutional Review Board of each participating institution,
and written informed consent was obtained from all
participants.
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Imaging data

Acquisition and standardized processing steps of the
multicentric MRI and PET data have been described in detail
on the ADNI website (adni-loni.usc.edu/methods). Briefly,
structural MRI data were acquired on 3 T scanning platforms
using T1-weighted sagittal 3-dimensional magnetization-pre-
pared rapid acquisition gradient echo sequences. AV45-PET
scans were acquired according to a standard dynamic 50–
70 min protocol following the intravenous injection of 370
± 37MBq of [18F]-AV45. All ADNI image data undergo stan-
dardized processing steps to increase data uniformity across
multicenter imaging data.

MRI data were processed using statistical parametric map-
ping (SPM8, Wellcome Trust Center for Neuroimaging) and
the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm). First,
images were segmented into partitions of gray matter (GM),
white matter (WM), and CSF using the tissue free
segmentation routine of the VBM8-toolbox. The resulting
GM and WM partitions were then high-dimensionally regis-
tered to MNI standard space using Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra (DARTEL)
(Ashburner 2007). Voxel values were modulated to preserve
the original amount of GM and WM present before
normalization.

In the literature, a variety of indicators of brain size have
been used, including head circumference, intracranial volume
(sum of GM, WM, and CSF volumes) or brain tissue volume
(sum of GM and WM volumes) (Christensen et al. 2008).
Since we were specifically interested in resilience properties
of the current brain size, brain volume was quantified by the

sum of GM and WM volume. In order to delineate the raw
brain volume from brain atrophy, we also quantified the nor-
malized brain volume by dividing the raw brain volume
through the total intracranial volume (TIV). TIV as well as
WMHV were calculated at the ADNI core laboratories from
T1-weighted and FLAIR data using published segmentation
methods (DeCarli et al. 2005; Fletcher et al. 2012).

Raw hippocampal volumes (bilateral) were calculated by
summing up all GM voxel values within newly created refer-
ence MNI-standard space hippocampal labels. These labels
result from segmentations of the high resolution MNI152-
template by four expert tracers following the newly
established Harmonized Protocol (Frisoni et al. 2015). The
labels were designed as consensus labels, wherein all voxels
were included that had been segmented as hippocampal tissue
by all four tracers (Wolf et al. 2017). Normalized hippocampal
volumes were calculated by dividing the raw hippocampal
volumes through the TIV.

Individual AV45-PET standardized uptake value ratios
(SUVRs) were calculated by ADNI PET core laboratories
(http://adni.loni.usc.edu/methods/pet-analysis). Briefly,
cerebral AV45 uptake was quantified by the mean uptake
within a composite mask including frontal, angular/posterior
cingulate, lateral parietal, and lateral temporal regions, divided
by the mean uptake within the cerebellum.

CSF measurement

All CSF biomarkers collected at different centers were stored
and analyzed at the Penn ADNI Biomarker Core Laboratory at
the University of Pennsylvania, Philadelphia. CSF

Table 1 Demographical and clinical data of diagnostic subgroups

CN MCI

N 158 299

Age (yr) 74 (6) 72 (7)

Gender (F/M) 80/78 136/163

Education (yr) 17 (2) 16 (3)

ADNI-mem 1.1 (0.6) 0.3 (0.7)

ADAS-cog 9.2 (4.6) 15.8 (7.2)

AV45 uptake 1.1 (0.2) 1.2 (0.2)

WMHV 4.2 (3.3) 4.6 (3.6)

p-tau181p 33.3 (15.7) 43.0 (24.8)

t-tau 67.5 (33.8) 87.3 (52.7)

APOE ɛ4 (−/+) 116/42 148/151

Norm. Hipp-vol right 2308.4 (176.4) 2155.8 (272.3)

Norm. Hipp-vol left 2100.8 (197.0) 1926.1 (287.2)

Abbreviations: CN= cognitively normal; MCI =mild cognitive impairment; ADAS-cog = Alzheimer’s Disease Assessment Scale-cognitive subscale;
ADNI-mem = ADNI memory composite score; AV45 uptake = cerebral amyloid load (standard uptake value ratio); WMHV = white matter
hyperintensity; p-tau181p = tau phosphorylated at the threonine 181 position (pg/ml); t-tau = total tau (pg/ml); Norm. Hipp-vol right = TIV-normalized
hippocampus volume right, expressed in mm3 ; Norm. Hipp-vol left = TIV-normalized hippocampus volume left, expressed in mm3 ; yr. = years; F/M =
female/male
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concentrations of p-tau and t-tau were measured in the base-
line CSF samples using the multiplex xMAP Luminex plat-
form (Lumnix Corp., Austin, TX). More details on data col-
lection and processing of the CSF samples can be found else-
where (Shaw et al. 2009) (http://adni.loni.usc.edu/methods).

APOE genotype

APOE genotype was determined by genotyping the two single
nucleotide polymorphisms that define the APOE ɛ2, ɛ3, and
ɛ4 alleles (rs429358, rs7412) with DNA extracted by
Cogenics from a 3-ml aliquot of EDTA blood (adni.loni.usc.
edu/data-samples/genetic-data).

Neuropsychological assessment

Cognitive ability was assessed using the Alzheimer’s
Disease Assessment Scale-cognitive subscale (ADAS-
cog, 13-item version) (Rosen et al. 1984) and the ADNI-
memory composite score (ADNI-mem) (Crane et al. 2012).
Both scores were chosen given their sensitivity to age and
AD-related brain pathology. While ADAS-cog assesses
various domains of cognition, the ADNI-mem score specif-
ically reflects memory deficits. Performances were
downloaded from the ADNI Web page (http://adni.loni.
ucla.edu).

Statistics

In the proposed resilience regression approach, ADAS-cog
and ADNI-mem scores were set as outcome variables.
ADAS-cog scores were inverted so that lower scores indicated
lower performance. Pathology measures (p- and t-tau, AV45
uptake, and WMHV), resilience factors of interest (education,
raw brain volume, normalized brain volume, raw hippo-
campal volume, and normalized hippocampal volume),
and the interactions between pathology markers and resil-
ience factors were set as predictor variables (separate re-
gression models were applied for each resilience factor).
Moreover, age, gender, and APOE4 status (APOE4 positiv-
ity on at least one ε4 allele vs. APOE4 negativity) were
included as control variables. All continuous predictor var-
iables were mean-centered in order to reduce collinearity
among predictors. The interaction terms between pathology
markers and resilience factor of interest were calculated
from the mean centered variables. All regression analyses
were repeated using robust regression models to control the
influence of potential outliers (based on an M estimator).
Statistical analyses were carried out using the statistical
software package R 3.0.2.

Results

Investigation of traditional resilience factors: Brain
volume and education

Results of the regression analyses including raw brain volume,
normalized brain volume, and education as resilience factors
of interest are shown in Table 2. For ADAS-cog resilience,
parametric linear regression analyses showed a positive main
effect of raw and normalized brain volume (raw volume:
p = .007; normalized volume: p < .001). A main effect of ed-
ucation has not been found. Moreover, none of the interaction
effects were significant.

For ADNI-mem resilience, parametric linear regression
analyses showed positive main effects of raw and normalized
brain volume (raw volume: p = .002; normalized volume:
p < .001) as well as of education (p = .005). No interaction
effects have been found.

Robust regression analyses confirmed all positive main ef-
fects of the linear regression analyses. For ADAS-cog resil-
ience, robust regression showed a trend towards a positive
main effect of education (p = .071) that has not been found
in the parametric linear regression model. No interaction ef-
fects (neither for ADAS-cog resilience nor for ADNI-mem
resilience) have been found.

Explorative investigation of hippocampal volume as potential
resilience factor

Results of the regression analyses including raw- and normal-
ized hippocampal volumes as resilience factors of interest are
shown in Table 3. For ADAS-cog resilience, parametric linear
regression analyses showed positive main effects of the left and
right raw and normalized hippocampal volumes (raw volume
left: p < .001, normalized volume left: p < .001; raw volume
right: p < .001, normalized volume right: p < .001). Moreover,
interaction effects between raw and normalized hippocampal
volumes (left and right) and t-tau have been found (raw volume
left: p = .025, normalized volume left: p = .013; raw volume
right: p = .019, normalized volume right: p = .008).

For ADNI-mem resilience, parametric linear regression anal-
yses showed positive main effects of the left and right raw and
normalized hippocampal volumes (raw volume left: p < .001,
normalized volume left: p < .001; raw volume right: p < .001,
normalized volume right: p< .001).Moreover, interaction effects
between normalized hippocampal volumes (left and right) and t-
tau have been found (left: p = .008, right: p = .010).

Robust regression analyses confirmed all main- and inter-
action effects that have been found in the parametric linear
regression analyses. Moreover, robust regression analyses
showed a trend towards an interaction between the raw hip-
pocampal volumes (left and right) and t-tau on ADAS-mem
resilience (left: p = .066; right: p = .089). As shown in
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Figure 2, the interactions between hippocampal volume and t-
tau were such that ADAS-cog resilience and ADNI-mem re-
silience were more positively associated with hippocampal
volumes at high levels of t-tau than at low levels of t-tau.

Discussion

In the present work, we introduced amethodological approach
for the investigation of resilience factors, followed by a dem-
onstration of utility using the example of age and AD-related
brain pathology.

Introduction of a methodological approach
to studying resilience factors

General aspects of strategies to studying resilience factors

Different methodological approaches have been developed to
investigate resilience factors. The investigation of such factors
requires at least 3 features: (i) a measure of resilience, (ii) a
measure of pathology or brain damage, and (iii) a measure of
cognitive outcome. In the literature on resilience research such

a specification is rarely achieved. Several approaches investi-
gate the association between a resilience factor of interest and
a common proxy for resilience, such as education, without
taking into account cognitive performance. Such approaches
provide supporting evidence for the claim of resilience but do
not test it (Christensen et al. 2008). Approaches that investi-
gate the full model often compare subjects who remain cog-
nitively intact with those who develop cognitive dysfunctions
in the face of significant pathology. Such an artificial dichot-
omization of the cognitive outcome ignores the intrinsically
continuous nature of resilience and has potential limitations,
including loss of power, spurious statistical significance and
decrease in reliability (Cohen 1983). Another set of strategies
included the application of regression approaches where cog-
nitive performance is set as outcome variable and an interac-
tion between pathology and resilience factor on cognition is
considered necessary to support the claim of resilience
(Christensen et al. 2008; Ewers et al. 2013). Such models take
all of 3 features that are necessary to investigate resilience
factors into account. More recent approaches investigated re-
silience factors by integrating a measure of resilience into a
latent variable model of resilience using path analyses
(Hohman et al. 2016).

Table 2 Investigation of brain volume and education as resilience factors

General linear model Robust regression

ADAS-cog
resilience

ADNI-mem
resilience

ADAS-cog
resilience

ADNI-mem
resilience

beta p beta p beta p beta p

Education .060 .153 .116 .005 .076 .071 .114 .007

Education x t-tau .046 .437 −.015 .797 .020 .734 −.036 .547

Education x p-tau −.038 .513 −.018 .751 −.036 .540 −.021 .721

Education x AV45 −.019 .714 .016 .756 .021 .692 .042 .428

Education x WMHV −.037 .387 −.021 .605 −.019 .657 −.025 .564

Raw brain volume .137 .007 .152 .002 .156 .003 .156 .003

Raw brain volume x t-tau .060 .327 −.015 .801 .015 .811 .003 .968

Raw brain volume x p-tau −.026 .657 .026 .656 .006 .919 .023 .699

Raw brain volume x AV45 −.045 .371 −.001 .989 .002 .971 .007 .885

Raw brain volume x WMHV −.030 .468 −.018 .658 −.024 .568 −.009 .833

Norm. Brain volume .226 <.001 .240 <.001 .219 <.001 .236 <.001

Norm. Brain volume x t-tau .059 .310 .041 .470 .071 .225 .059 .310

Norm. Brain volume x p-tau −.079 .163 −.104 .061 −.079 .159 −.100 .077

Norm. brain volume x AV45 .016 .748 .008 .876 .024 .640 .001 .986

Norm. brain volume x WMHV .066 .126 .030 .479 .052 .226 .021 .626

Note: ADAS-cog and ADNI-mem scores were set as outcome variables. Pathology measures (t-tau, p-tau, AV45, WMHV) were set as predictor
variables in all regression analyses to adjust the variance in cognition for the effect of pathology. Brain volume (raw and normalized) and its interaction
with pathology measures as well as education and its interaction with pathology measures were set predictor variables of interest (in separate regression
analyses). Age, gender, and APOE4 status were set as control variables in all regression analyses (control variables are not shown in the table).
Abbreviations: ADAS-cog resilience = pathology-adjusted variance of the Alzheimer’s Disease Assessment Scale-cognitive subscale; ADNI-mem
resilience = pathology-adjusted variance of the ADNI-memory composite score; AV45 = cerebral amyloid load (standard uptake value ratio);
WMHV: white matter hyperintensity volume; beta: standardized beta coefficients
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Strengths and limitations of the proposed approach
to studying resilience factors

Our approach aims at extending and re-conceptualizing tradi-
tional regression approaches, where cognitive performance
was set as outcome variable and an interaction between pa-
thology and resilience factor was set as predictor variable. The
approach is based on a systematic consideration of (i) effects
of a resilience factor on resilience and (ii) interaction effects
between a resilience factor and pathology on resilience. In the
proposed model, a significant interaction is not considered
necessary to support the claim of resilience but indicates a
dynamically changing importance of a resilience factor with
increasing pathology (i.e. dynamic resilience factor). On the
other hand, the lack of an interaction in the presence of a main
effect of the resilience factor indicates a general resilience
factor that is independent of the amount of pathology. Thus,
besides the determination of potential resilience factors our

model allows for a differentiation of general and dynamic
resilience factors in terms of their association with pathology.
The model takes all 3 features into account that are necessary
to investigate resilience factors. Moreover, it avoids artificial
dichotomization/aggregation of continuous variables. It can
be complemented by control variables (e.g. age and gender)
and extended by resilience factors that have been found in
previous studies, enabling the investigation of the independence
of a resilience factor of interest from already known factors.
Together with its unspecific and superordinate nature it may
find a wide application and thereby promote the comparability
between studies within the field of resilience research.

Our approach has some limitations. As all linear regression
models, our model is sensitive to outliers. In case of outliers, a
robust regression model should be applied in addition to/
instead of the proposed linear model. Moreover, the model is
sensitive to overfitting which results in the modeling of the
random error in the data rather than of the relationship

Table 3 Investigation of hippocampal volume as potential resilience factor

General linear model Robust regression

ADAS-cog
resilience

ADNI-mem
resilience

ADAS-cog
resilience

ADNI-mem
resilience

beta p beta P beta p beta p

Raw hipp-vol left .301 <.001 .295 <.001 .304 <.001 .296 <.001

Raw hipp-vol left x t-tau .136 .025 .105 .078 .135 −.025 .111 .066

Raw hipp-vol left x p-tau −.058 .344 −.041 .501 −.071 .248 −.046 .450

Raw hipp-vol left x AV45 −.014 .790 −.008 .882 .030 .577 −.009 .874

Raw hipp-vol left x WMHV .028 .474 .029 .450 .039 .320 .025 .528

Raw hipp-vol right .232 <.001 .233 <.001 .229 <.001 .237 <.001

Raw hipp-vol right x t-tau .139 .019 .091 .118 .133 .027 .101 .089

Raw hipp-vol right p-tau −.026 .655 .001 .994 −.025 .676 .009 .876

Raw hipp-vol right AV45 −.045 .376 −.035 .485 −.003 .952 −.044 .385

Raw hipp-vol right WMHV .045 .257 .001 .979 .066 .552 .031 .779

Norm. Hipp-vol left ..283 <.001 .278 <.001 .287 <.001 .271 <.001

Norm. Hipp-vol left x t-tau .135 .013 .142 .008 .148 .006 .133 .013

Norm. Hipp-vol left x p-tau −.080 .173 −.097 .094 −.098 .100 −.093 .112

Norm. Hipp-vol left x AV45 .031 .558 .003 .961 .044 .400 −.010 .850

Norm. Hipp-vol left x WMHV .066 .093 .045 .252 .072 .068 .029 .461

Norm. Hipp-vol right .208 <.001 .205 <.001 .201 <.001 .217 <.001

Norm. Hipp-vol right x t-tau .151 .008 .146 .010 .157 .006 .143 .011

Norm. Hipp-vol right x p-tau −.049 .429 −.055 .365 −.054 .382 −.040 .513

Norm. Hipp-vol right x AV45 .011 .835 −.026 .612 .021 .693 −.048 .362

Norm. Hipp-vol right x WMHV .062 .118 .033 .404 .066 .102 .025 .532

Note: ADAS-cog and ADNI-mem scores were set as outcome variables. Pathology measures (t-tau, p-tau, AV45, WMHV) were set as predictor
variables in all regression analyses to adjust the variance in cognition for the effect of pathology. Hippocampal volumes (raw and normalized) and their
interactions with pathology measures were set as predictor variables of interest. Age, gender, and APOE4 status were set as control variables in all
regression analyses (control variables are not shown in the table). Abbreviations: ADAS-cog resilience = pathology adjusted variance of the Alzheimer’s
Disease Assessment Scale-cognitive subscale; ADNI-mem resilience = pathology-adjusted variance of the ADNI-memory composite score; AV45 =
cerebral amyloid load (standard uptake value ratio); WMHV: white matter hyperintensity volume; beta: standardized beta coefficients
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between outcome and predictor variables. Overfitting com-
monly arises when too many predictors (compared to the
number of samples) are included in the regression model.
Finally, linear regression models are meant to describe linear
relationships between predictors and outcome variables. Thus,
the proposed model is limited in the detection of non-linear
resilience effects.

Demonstration of utility of the approach

Utility of the approach was demonstrated in age and AD-
related brain pathology. Pathology was quantified using CSF
measures of p- and t-tau, PET-based measures of cerebral
amyloid load, and MRI-based measures of WMHV.

Brain volume and education

In a first step, the proposed approach has been applied to inves-
tigate widely accepted resilience factors in the aging and AD
literature, including education and brain volume. In addition to
the raw brain volume the TIV-normalized brain volume has been
investigated, which is typically seen as a measure of atrophy.

In line with previous studies (Ewers et al. 2013; Stern 2006,
2012), education could be identified as resilience factor
against age and AD-related brain pathology (main effect of

education on ADNI-mem resilience and trend towards a main
effect on ADAS-cog resilience in the robust regression anal-
ysis). Regression analyses further indicated that the associa-
tion of education with resilience is independent of the amount
of pathology (non-significant interactions between resilience
factors and pathology measures), suggesting that education
represents a general resilience factor. From a mechanistic per-
spective, it has been suggested that education is related to
processes that actively compensate brain damage to preserve
cognitive functioning (Stern 2006, 2012).

In line with education, current brain volume could be con-
firmed as resilience factor against age and AD-related brain
pathology. Interestingly, regression analyses demonstrated
that both raw- and normalized brain volumes were positively
associated with resilience. It has been suggested that brain
volume acts as a passive reserve factor insofar as larger brains
might simply tolerate more pathology (Stern 2006, 2012).
Normalized brain volume is typically seen as a measure of
atrophy. The observed associations between normalized brain
volume and resilience suggest that resilience might also be
manifested by less brain atrophy (respectively higher brain
health) at a given level of pathology. In line with education,
regression analyses further suggest that the association be-
tween brain volume (raw- and normalized volumes) and resil-
ience is independent of the amount of pathology, indicating
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Fig. 2 Scatterplots of the relationship between hippocampal volumes
(upper row: raw hippocampal volumes; lower row: normalized
hippocampal volumes) and resilience (left side: pathology-adjusted
ADAS-cog scores; right side: pathology-adjusted ADNI-mem scores)
separated for t-tau extreme groups using quartile splits (low t-tau: lower

quartile, N = 115; high t-tau: upper quartile, N = 114). Associations be-
tween hippocampal volumes and ADAS-cog/ADNI-mem resilience are
given in colored lines (green lines: relationship between both variables at
low levels of t-tau; red lines: relationship between both variables at high
levels of t-tau)



that raw- and normalized brain volume represent general re-
silience factors.

Hippocampal volume

In explorative analyses, the proposed approach was used to
investigate hippocampal volume as potential resilience factor.
Robust regression analyses showed that both raw- and nor-
malized hippocampal volumes (left and right) are positively
associatedwith resilience (main effect of hippocampal volume
on ADAS-cog resilience and ADNI-mem resilience), indicat-
ing a general resilience effect of hippocampal volume on age
and AD-related pathology. These findings are in line with
previous studies indicating that the hippocampus might not
only be target of AD-related pathology but also serve as a
potential resilience factor (Chételat et al. 2010; Erten-Lyons
et al. 2009). Resilience properties of raw hippocampal volume
might be explained by a passive reserve mechanism, similar to
the potential mechanism of raw brain volume. Subjects with
higher hippocampal volumes may tolerate more pathology
leading to less severe cognitive decline. In line with normal-
ized brain volume, normalized hippocampal volume is typi-
cally seen as a measure of atrophy. Resilience properties of
normalized hippocampal volume might be explained by un-
derlying active compensatory processes, which might attenu-
ate hippocampal atrophy and maintain hippocampal function.
An increase in hippocampal neurotrophin levels has been ob-
served especially in MCI and early AD stages (Mufson et al.
2015). Moreover, hippocampal hypertrophy of neuronal nu-
clei, cell bodies and nucleoli has been found at autopsy in
brains of cognitively healthy elderly with ß-amyloid plaques
compared to cognitively healthy elderly without ß-amyloid
plaques and to MCI and AD patients (Iacono et al. 2009;
Riudavets et al. 2007). These results have been interpreted
as reflecting active compensatory cellular responses to injury.

Beyond the main effects of hippocampal volume on
ADAS-cog resilience and ADNI-mem resilience, regression
analyses showed significant interaction effects between hip-
pocampal volume (raw and normalized, left and right) and t-
tau on ADAS-cog resilience and ADNI-mem resilience, sug-
gesting that the association between hippocampal volume and
resilience dynamically increases with increasing t-tau levels
(see Figure 2). Tau pathology in aging and early AD-stages
has mainly been found in medial temporal and hippocampal
regions (Braak and Braak 1995; de Calignon et al. 2012;
Johnson et al. 2016). This spatial proximity of tau pathology
to the hippocampus (respectively spatial overlap) may explain
the particular importance of hippocampal resilience properties
with increasing tau pathology. Of note, both the main effects
of hippocampal volume on ADAS-cog resilience and ADNI-
mem resilience and the interaction effects between hippocam-
pal volume and t-tau on ADAS-cog resilience and ADNI-
mem resilience remained unchanged when controlling for

brain volume and education as already known resilience fac-
tors, suggesting that hippocampal volume represents an inde-
pendent resilience factor (data not shown).

Conclusion

With the present work, we aimed at providing a methodolog-
ical approach for the investigation of resilience factors that
extends and re-conceptualizes existing regression approaches.
Besides the identification of potential resilience factors it aims
at the differentiation of general and dynamic resilience factors
in terms of their association with pathology. Given its unspe-
cific and superordinate nature it may find a wider application
and thereby increase the comparability between studies.
Utility of the approach has been demonstrated in age and
AD-related brain pathology. Widely accepted resilience fac-
tors in the aging and AD research field, including education
and brain volume, could be reproduced by the model.
Moreover, analyses highlighted hippocampal volume as a
promising resilience factor against age and AD-related brain
pathology, particularly in case of elevated tau-pathology.
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